The height of a workplace

Lasers are sources of coherent and extremely brilliant light. Generally, the emitted light beam is almost parallel (the divergence of a typical laser beam is in the order of milliradian) and all the specular and even diffuse reflections may present significant risks to the eye. Indeed, eye hazards are used as reference for the laser hazard classification from class 1 (safe) to class 3B (dangerous to the eye in direct vision, and often to the skin) and 4 (hazardous to the eye, including the cases of diffuse reflections, the skin and can cause a fire).

In 2010, the SUVA has published a new version of the Directive 66049, which provides information on the characteristics and hazards of laser radiation, the requirements on health and safety related to laser and the obligations of laser users.

On its side, the SB-SST has issued an internal directive LA-1-2008 which dictates, in a concise manner, protective measures to take if a laser source of class 3B or 4 is used. The directive is available on our web site and should be consulted before each new installation of laser equipment. LA-1-2008 proposes three types of safety measures related to: confinement of laser beam on the optical table, lab access limitation and personal protection to protect against accidents that occur during direct exposure to the beam but also when the beam is reflected or scattered on a surface.

If the accessible laser beam is not confined by fixed protection, the workstation must be raised so that the laser radiation is confined in a plane below the horizontal plane at eye level of a person sitting at his workstation. This rule requires special attention, considering all the chairs and screens present in the laboratory with safety measures.

A succession inside SB-SST

The SB-SST has the pleasure to announce the arrival of Sebastian Brückner in the team. He replaces Jean-Luc Marendaz, who wasn’t able to continue his activities as safety engineer at the SB-SST and as deputy head of the Section of chemistry and chemical engineering at the same time. From now on, he will concentrate his work on the development of this Section. The SB-SST warmly thanks Jean-Luc Marendaz for his creativity and elaboration and enforcement of the safety culture in our Faculty, especially in the domains of chemical risk and radioprotection. Although SB-SST looses a precious experience, we know that we keep a collaborator who will always encourage the aspects of occupational safety in particular during his work with students where the impact is a long-term one.

Sebastian Brückner is a chemist who has a rich experience in techniques of organic synthesis and in medical chemistry. After his PhD thesis in organic chemistry at the University Louis Pasteur in Strasbourg, he went to England, Oxford for a post-doctoral position and he experienced several activities in companies as organic and medicinal chemist.

On his arrival in the team he did not have any specific background in occupational safety and health but an experience from the field thanks to his former activities. Now he already follows a professional training in order to become ‘Chargé de sécurité’. Thanks to this double profile: being confirmed experimentalist and safety specialist, he will work with chemists in particular to give them the best possible advices.